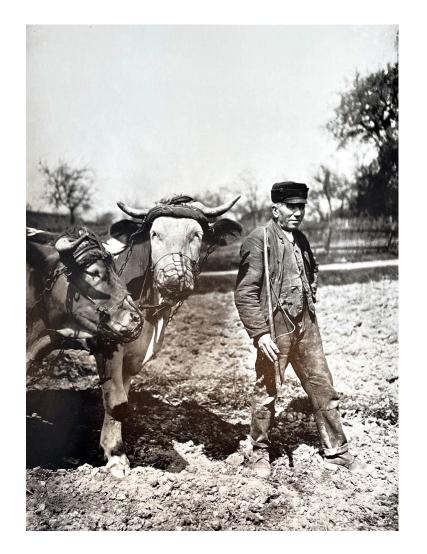


100 YEARS OF BIODYNAMICS A LOOK INTO THE FUTURE



Farming family ca. 1910
Source: August Sander Photography / Book: People of the 20th century

Farmer at work — ca. 1928 Farmer sowing — ca. 1940 Source: August Sander Photography / Book: People of the 20th century

Aims and Objectives of agricultural science 100 years ago:

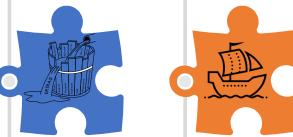
- → How to ensure food security?
- → How to increase quantity?
- → How to facilitate the work?
- → How to increase quality?

Agriculture from the 19th century onwards

1828 & 1840

The Law of the Minimum

Growth is dictated not by total re-


resource. Fertilisation is only a

1828 by Carl Sprengel

1840 by Justus von Liebig

sources available, but by the scarcest

question of substances (mainly NPK).

mid-19th century

Chile saltpetre

Large quantities of saltpetre (nitrogen) mined in the Atacama desert are transported to Europe on ships - e.g. around 800.000 tons / year to Germany before WWI

Haber-Bosch-Method

Invention of the process for the synthetic production of ammonia. 1914: The saltpetre promise by the German emperor = Start of largescale industrial production

World War I

The First World War resulted in heavily depleted soils. After WWI nitrogen was available in big quantities →soil $acidification \rightarrow First intensification$ crisis with severe setbacks in mechanisation and chemisation

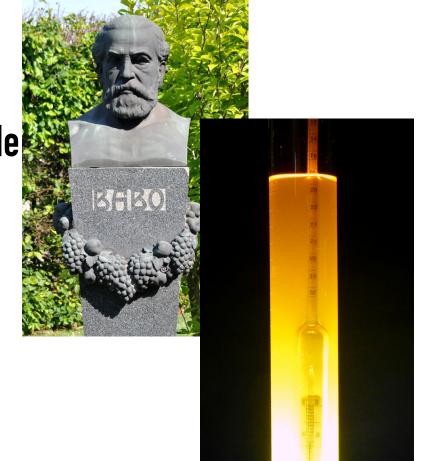
Steiner's lectures

Rudolf Steiner gives the lectures on agriculture in Koberwitz

Agricultural science and its specialisation

Foundation of Viniculture Schools in German Speaking countries:

1860 Kloster Neuburg – first worldwide


1868 Weinsberg

1872 Geisenheim

1899 Bad Neuenahr-Ahrweiler

1902 Veitshöchheim

Agriculture from the 20th century onwards

1933 - 1945

Nazis and World War II

Major influence on agricultural

policy = e.g. the idea of self-

1936: Artificial fertiliser is exempt

sufficiency.

from VAT

1950s

Industrialisation and mechanisation

The great upheaval in production methods with the precise and brutal use of machinery and chemicals

1980s

Environmental movement gathers pace

The costs of this development are becoming increasingly apparent. Issues such as forest dieback and Tchernobyl fuel the environmental debate.

2010s

Climate Change and Green Deal

Climate change is becoming increasingly visible, search for strategies for climate protection and adaptation. Agriculture and soil as a key to combat problems.

2024

Biodynamic Farming becomes 100 years

What contribution can biodynamics make to overcome these challenges?

Where did Rudolf Steiner get it right?

- → Soil is not just "dirt" and fertilising is not just adding some substances
- → good farming means building soils
- Science must also take place on living objects, outdoors in nature

Some of the aims of agriculture today (biodynamic or not...):

- Ensure sustainable yields in times of climate change
- → Reduction greenhouse gas
- → Enhancing Biodiversity
- Sustainable land use and soil health

2022 In den Kreuthern Grüner Veltiner Weingut Schödl, Weinviertel

"Rudolf Steiner's ideas on soil and fertilisation were always modern – people just didn't understand them for a while." Mathias Schödl

- Vines planted from three generations
- Calcareous loam
- Wild fermentation

2021 Grüner Veltliner "Alte Reben" Magnum Weingut Ebner-Ebenauer, Weinviertel

- Vines planted in the 1950s
- Loess and gravely soils
- Wild fermentation in used wooden casks.

"In most years we have to make do with very little water. We can promote humus build-up & thus the water storage capacity! Biodynamics thus helps us to face CLIMATE CHANGE with confidence and basic trust!"

Marion Ebner-Ebenauer

2021 Ried Rosenberg 1 ÖTW Nussberg Grüner Veltliner Weingut Bernhard Ott, Wagram

"Compost is a medicine." Bernhard Ott

- South-facing encircled vineyard
- 65 year old vines
- Loess soils
- Basket press
- Wild ferment in big wooden casks

2019 Ried Goldberg 1ÖTW Grüner Veltliner Weingut Diwald, Wagram

- 28 year old vines
- South-facing slopes, 305 mNN
- Loess soils
- Wild fermentation in stainless steel
- Lees ageing for 10 months in stainless steel

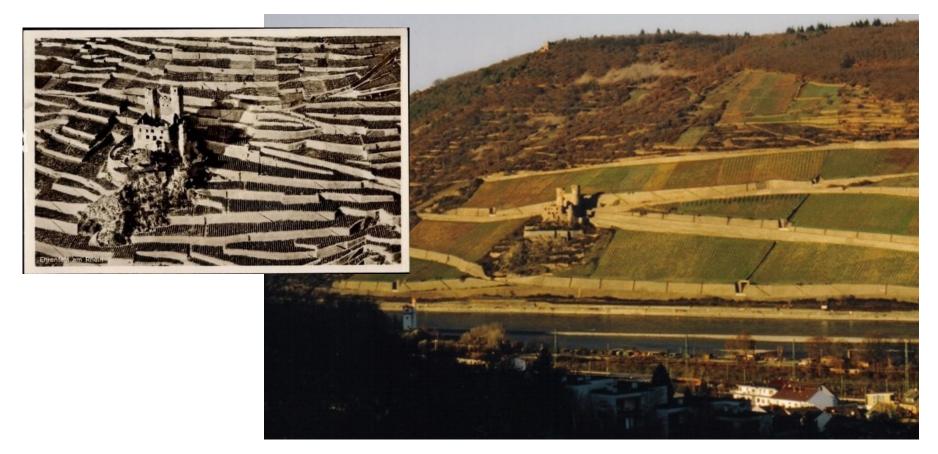
Can PIWI be the only answer?

(source: GWI statistics 23/24 — Austrian Wine statistics 23)

- 80% less plant protection required / 2 treatments (e.g. with organic sprays)
- Savings of 40 kg/ha CO2 per plant protection measure
- Currently around 3% (2700 ha) of the vineyards planted in Germany
- Currently around 1.8% (820 ha) of the vineyards planted in Austria

PIWI Germany	PIWI Austria
1618 ha Regent (red)	278 ha Roesler (red)
260 ha Cabernet Blanc (white)	110 ha Blütenmuskateller (white)
205 ha Souvignier Gris (white)	97 ha Muscaris (white)
126 ha Johanniter (white)	66 ha Souvignier gris (white)
117 ha Muscaris (white)	50 ha Rathay (red)

Pruning methods and results. "Think like a plant"


Picture source: www.wordonthegrapevine.co.uk

Land consolidation e.g. Rüdesheim Mountain Focus: Mechanisation & Drainage after many rainy years What about soil life?

"Today, almost 50% of all grafted vines in the Federal Republic of Germany are grafted onto Geisenheim rootstocks.... Around 40% of all Riesling vines grafted for German viticulture are Geisenheim clones."

Prof. Dr. H. Becker, in the year 1972

Source: Geisenheim 1872 – 1972 – 100 Jahre Forschung und Lehre für Wein-, Obst- und Gartenbau

- 1874 Phylloxera discovered for the first time near Bonn
- 1891 research on grafting in Geisenheim starts.
- Use of clone selections becomes common from 1927 onwards
- Grafting was state ruled = 1936 = 423 000 vines
- After WWII grafting privatised = 1957 = 50 million grafted vines

(Source: Geisenheim 1872 — 1972 — 100 Jahre Forschung und Lehre für Wein-, Obst- und Gartenbau / Prof. Dr. W. Kiefer, page 63ff)

Wine yields in France, Germany, Italy and Spain 1900 to 2015 in KL/ha, ten-year moving average

(Source: Book Wine Globalization by Kym Anderson & Vicente Pinilla — Cambridge University Press, 2018)

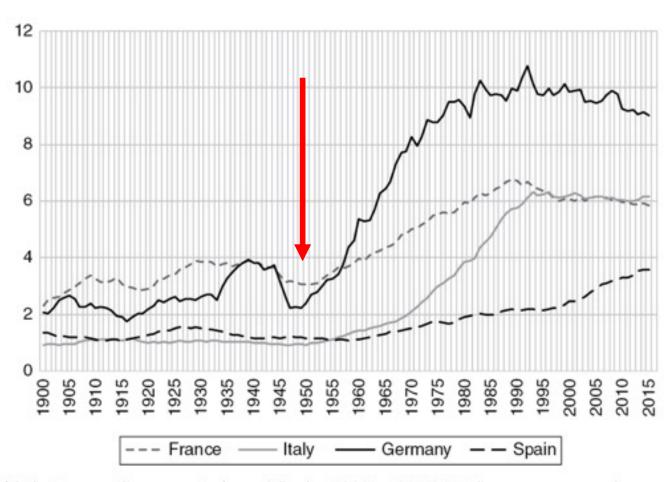
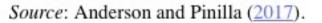



Figure 4.2 Wine yields in France, Germany, Italy and Spain, 1900 to 2015 (KL/ha, ten-year moving average).

And what about the practices in vine nurseries?

e.g. Christop Hebinger in Eguisheim:

- Organic practices / diversity of rootstocks
- Mother vine trained on tables
- F2 graft instead of Omega graft
- Sélection massale

Where did Rudolf Steiner get it right?

→ Farm individuality e.g. for the development of own farm varieties

"The human being becomes the basis for observation."
 Tools for the practioniers to gather information and categorise it

2022 Reiterpfad Riesling trocken Garage Caveau, Pfalz

"For me, biodynamics shows in a hot vintage like 2022 that you can still produce cool Rieslings." Martin Fußer

- Sandstone with chalky marl (red)
- Whole bunch pressing
- Wild ferment in stainless steel
- No temperature control
- On full yeast until May 2023

2017 Ried Gaisberg 1ÖTW Zöbing Riesling Weingut Hirsch, Kamptal DAC

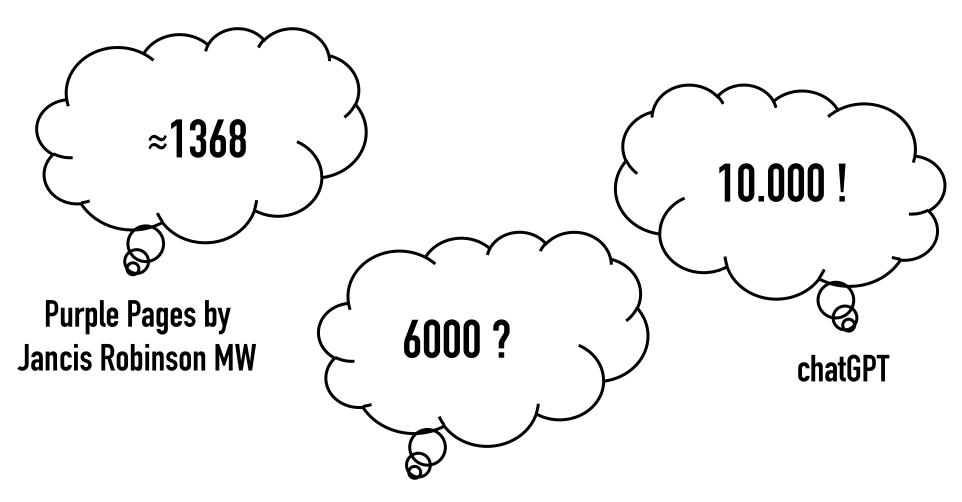
- Southwest facing vineyard
- Lime-free silicate brown earth of sandy soils =
 formed from weathered mica schist
- Whole bunch pressing
- Wild fermentation
- Some batches in stainless steel and some in casks
- Around 8 months lees ageing

2017 Marienburg Rotenpfad "Reserve" VDP.Grosse Lage Weingut Clemens Busch, Mosel

- Part of the Marienburg Vineyard with red slate
- South-east facing slope
- Wild fermentation
- Reserve = 24 months ageing on lees
- Big wooden casks (Fuder)
- No filtration

2015 Kastanienbusch GG VDP.Grosse Lage Weingut Ökonomierat Rebholz, Pfalz

- Kastanienbusch is a south, southeast facing and steep slope
- Special red soils "Oberrotliegendes" mix granite, slate and melaphyr, high iron content
- Multiple harvesting passes & de-stemming
- 24 h skin contact
- Fermentation in stainless steel
- Since 2015 working with own cultured yeast



How many vitis vinifera varieties are there actually?

Austria & Germany: today the respective 10 most planted grape varieties \approx ca. 80% of the vineyard area

Copyright: Landesmedienzentrum Baden-Württemberg Weinlese: Bremsen des Leiterwagens, Zabergäu, ca. 1950

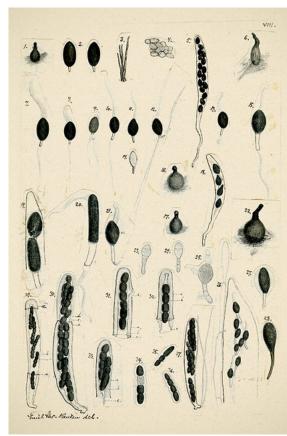
There are many reasons for concentrating on just a few varieties — only a few examples:

- Marketing & consumer preferences
- Variety belongs to the terroir concept
- Viticultural objectives: e.g. homogeneity, secure and stable yields, must weight, mechanisation requirements, etc.,...
- Some grape varieties lost out to 'modern' cellar receipes, for example Silvaner or Roter Veltliner

Cellar Technology in Geisenheim founded only in 1962

"In the technical field, there was no need for differentiated methods of cellar technique.

The wines were stored in barrels for 2 – 3 years, fermented dry and were basically subject to the coincidences of the vintage."


Prof. G. Troost

Source: Geisenheim 1872 – 1972 – 100 Jahre Forschung und Lehre für Wein-, Obst- und Gartenbau

The backstory of cultured yeast

1883 Emil Christian Hansen developed cultivated yeast

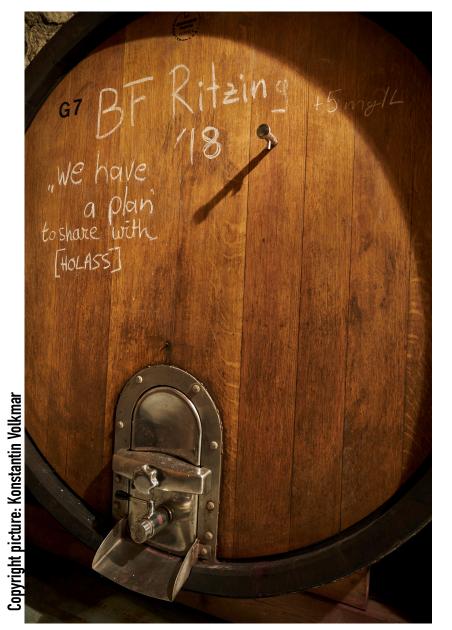
1894 Foundation of cultured yeast breeding in Geisenheim

Prof. Dr. Müller-Thurgau

1902 Foundation of cultured yeast breeding Klosterneuburg

Prof. Wenzel

1966 Audit office from Hessen complains that sale of cultured yeast


no longer covers costs and recommends closing

1960s: chemical treatment of Botrytis (e.g. Euparen, Folpet)

= use of cultured yeast became common

Source: Geisenheim 1872 — 1972 — 100 Jahre Forschung und Lehre für Wein-, Obst- und Gartenbau, Prof. Dr. H. H. Dittrich, page 108 ff www.weinobstklosterneuburg.at — 160 Jahre Geschichte Klosterneuburg

Where did Rudolf Steiner get it right?

→ There are countless interactions in nature. Many of them are not (yet) known.

→ Respekt for Nature's slowness (Goethe)

2021 Ried Rosengartl 1ÖTW Nussberg Wiener Gemischter Satz DAC Weingut Wieninger, Wien

- South-facing slope
- Core of the vineyard Nussberg
- Limestone soils with clay
- Field blend
- Vineyard planted with 50% Grüner Veltliner and Weißburgunder, Neuburger, Traminer and Riesling
- Skin contact for 4 hours
- Stainless steel

2021 Ried Steinberg 1 ÖTW Roter Veltliner Weinberghof Fritsch, Wagram

- Steep slopes facing southeast
- Slate & Granite soils with some loess
- 12 year old vines
- -310 330 mNN
- Berries were crushed
- 36 hours skin contact
- Wild fermentation
- Ageing in 2000 l barrels made of Acacia wood

2021 Ried Zieregg Steilriegel Morillon GSTK Weingut Tement, Südsteiermark

- Coralline limestone soil and loose brown earth
- Southwest facing slope, warmest part of the vineyard
- Around 40 year old vines
- Wild fermentation in neutral casks
- 24 months lees ageing
- Unfiltered

2021 Ried Alter Kranachberg Sauvignon Blanc Familienweingut Sattlerhof, Südsteiermark

- 450 mNN, southfacing steep slope
- calcareous silica sands
- Fermentation in stainless steel

'Our age is proud of machines that can think, and suspicious of humans who try.' H. Mumford Jones

Biodynamic perspectives for the future

Climate Change & Decarbonisation:

- Biodynamics can help to make agroecosystems more resilient through soil development and biodiversity strategies.
- We will continue to make a positive contribution in the future by storing CO2 through humus formation. We are also open to environmentally friendly new technologies (e.g. building technology, light bottles, machines, etc,...).
- It is important to review and evaluate modern techniques and use them accordingly. NO DOGMA!!

Biodynamic perspectives for the future

Certification is very important to us!

- How can it offer more freedom without jeopardising quality?
- How can it better serve the development of wineries?

- The situation in the vineyard is changing rapidly. Certifications and legislators are adapting too slowly. How can this be overcome?

Biodynamic perspectives for the future

<u>Declining wine consumption and increasing anti-alcohol policies is viticulture's No. 2 risk after climate change.</u>

- Our goal: wine as a cultural asset, not just as a beverage. Biodynamic viticulture can promote understanding and appreciation.'

2019 Gumpoldskirchen Anning Pinot Noir Weingut Fred Loimer, Thermenregion

- Sedimentary soil interspersed with limestone gravel
- Pannonian climate
- 11 14 year old vines / 5000 plants per ha
- Wild fermentation with 100% stems
- Ageing for 12 months in 300 l barrels
- & ageing for 6 months in big wooden casks

2021 Blaufränkisch Ried Ruster Ludmaisch Leithaberg DAC Weingut Feiler-Artinger, Burgenland

- Light sandy topsoil on granit-gneis micashist
- Wild ferment in open vats
- Punching down by hand
- 24 months ageing in barrique
- 25% new oak

2021 Blaufränkisch Astral, Weingut Andreas Gsellmann, Neusiedlersee

- Wild fermentation in 500 l wooden casks
- Cooler fermentation temperature (25 27°C)
- On lees for 5 months
- Afterwards aged in 1000 l amphora
- Unfiltered

2015 Alter Berg Blaufränkisch, Leithaberg DAC Gernot & Heike Heinrich, Burgenland

- Southeast facing slopes
- Forrest on top, cherry trees in the rows
- Poor limestone soil
- Wild fermentation
- Three weeks time on the skins
- Ageing for 28 months in 500 l barrels

Thank you for your attention

Romana Echensperger MW - Germany

info@romana-echensperger.de

Instagram: @romanaechensperger

100 YEARS OF BIODYNAMICS — VieVinum, 27th May 2024 Most im important sources:

Uekötter, Frank: Die Wahrheit ist auf dem Feld, Eine Wissensgeschichte der deutschen Landwirtschaft, Göttingen, 2012, Verlag Vandenhoek & Ruprecht

Herausgeber Paul Claus: Geisenheim 1872 – 1972, 100 Jahre Forschung und Lehre für Wein-, Obst- und Gartenbau, Geisenheim 1972, Verlag Ulmer

Vogt, Gunter: Entstehung und Entwicklung des ökologischen Landbaus. Bad Dürkheim, 2000, Stiftung Ökologie und Landbau

Steiner, Rudolf: Geisteswissenschaftliche Grundlagen zum Gedeihen der Landwirtschaft, Dornach, 1973, Rudolf Steiner Verlag

Schmitt, L: 100 Jahre Superphosphat, 75 Jahre Verein Deutscher Dünger-Fabrikanten, Festschrift, Wiesbaden — Biebrich, 1955, Chemische Werke Albert

Festschrift 100 Jahre Agrarzentrum Limburgerhof 1914 — 2014, Limburgerhof, 2014, BASF

Kalinke, Helmut: Der Deutsche Wein- und Getränkemarkt in Zahlen, Band I und II, Geisenheim, 1985

